Small Business Innovation Research/Small Business Tech Transfer

Optimal Composite Materials using NASA Resins or POSS Nanoparticle Modifications for Low Cost Fabrication of Large Composite Aerospace Structures, Phase I Completed Technology Project (2005 - 2005)

Project Introduction

Reduced mass composite materials are crucial to the success of aerospace systems, but their adoption is inhibited because they require autoclave consolidation, a process that is prohibitively expensive for large aerospace structure. To remedy this, NASA-LaRC has been developing cost-effective high-performance thermoplastic composite processing equipment that enables out-of-autoclave tape placement. In particular, NASA is working with Accudyne Systems to install a heated in situ deposition placement head to fit on NASA-LaRC's placement machine. This SBIR is to create the optimal composite material feedstock to go hand-in-hand with the thermoplastic process equipment so as to create desirable mechanical and physical properties in a part with out-of-autoclave in-situ placement. Accudyne Systems will define the matrix resin and fabricate thermoplastic tape to create the ideal in situ processible material. The first approach will be to proveout a fully amorphous composite based upon NASA 8515. This avoids the undesirable kinetics of a semi-crystalline thermoplastic like PEEK. The second approach will be to use POSS nanoparticles in semi-crystalline PEEK to accelerate crystallinity to the short time scale of the in situ process. The best options will be commercialized to allow NASA and aerospace primes to fabricate low-cost large composite structure for air and space transport.

Primary U.S. Work Locations and Key Partners

Optimal Composite Materials using NASA Resins or POSS Nanoparticle Modifications for Low Cost Fabrication of Large Composite Aerospace Structures, Phase I

Table of Contents

Project Introduction	1	
Primary U.S. Work Locations		
and Key Partners	1	
Organizational Responsibility		
Project Management		
Technology Areas		

Small Business Innovation Research/Small Business Tech Transfer

Optimal Composite Materials using NASA Resins or POSS Nanoparticle Modifications for Low Cost Fabrication of Large Composite Aerospace Structures, Phase I Completed Technology Project (2005 - 2005)

Organizations Performing Work	Role	Туре	Location
Langley Research Center(LaRC)	Lead	NASA	Hampton,
	Organization	Center	Virginia
Accudyne Systems,	Supporting	Industry	Newark,
Inc.	Organization		Delaware

Primary U.S. Work Locations	
Delaware	Virginia

Organizational Responsibility

Responsible Mission Directorate:

Space Technology Mission Directorate (STMD)

Lead Center / Facility:

Langley Research Center (LaRC)

Responsible Program:

Small Business Innovation Research/Small Business Tech Transfer

Project Management

Program Director:

Jason L Kessler

Program Manager:

Carlos Torrez

Principal Investigator:

Mark B Gruber

Technology Areas

Primary:

 TX12 Materials, Structures, Mechanical Systems, and Manufacturing
 TX12.1 Materials

Continued on following page.

Small Business Innovation Research/Small Business Tech Transfer

Optimal Composite Materials using NASA Resins or POSS Nanoparticle Modifications for Low Cost Fabrication of Large Composite Aerospace Structures, Phase I Completed Technology Project (2005 - 2005)

Technology Areas (cont.)

 □ TX12.1.6 Materials for Electrical Power Generation, Energy Storage, Power Distribution and Electrical Machines

